Chapter JavaScript
Introduction

JavaScript is the most popular scripting language on the internet, and works in all major browsers. It was designed to add interactivity to HTML pages. It is usually embedded directly into HTML pages. JavaScript is an interpreted language.
JavaScript's official name is ECMAScript. ECMAScript is developed and maintained by the ECMA organization. ECMA-262 is the official JavaScript standard. The language was invented by Brendan Eich at Netscape (with Navigator 2.0), and has appeared in all Netscape and Microsoft browsers since 1996.

Note:- Java and JavaScript are two completely different languages in both concept and design.
Use of JavaScript:-

· JavaScript gives HTML designers a programming tool - HTML authors are normally not programmers, but JavaScript is a scripting language with a very simple syntax! Almost anyone can put small "snippets" of code into their HTML pages

· JavaScript can put dynamic text into an HTML page - A JavaScript statement like this: document.write("<h1>" + name + "</h1>") can write a variable text into an HTML page

· JavaScript can react to events - A JavaScript can be set to execute when something happens, like when a page has finished loading or when a user clicks on an HTML element

· JavaScript can read and write HTML elements - A JavaScript can read and change the content of an HTML element

· JavaScript can be used to validate data - A JavaScript can be used to validate form data before it is submitted to a server. This saves the server from extra processing

· JavaScript can be used to detect the visitor's browser - A JavaScript can be used to detect the visitor's browser, and - depending on the browser - load another page specifically designed for that browser

· JavaScript can be used to create cookies - A JavaScript can be used to store and retrieve information on the visitor's computer
Inserting JavaScript into HTML
The HTML <script> tag is used to insert a JavaScript into an HTML page.
JavaScript tags and attributes

	Tag/Attribute
	Description

	<script>
	Identifies the script section in the document.

	language="JavaScript"
	Specifies the scripting language. This attribute is deprecated but often used.

	type="text/javascript"
	Provides the script MIME type. (Replacement of language attribute.)

	src="…"
	Optionally specifies the location of an external script.

	<noscript>
	Provides content for nonscript-capable browsers.

	<!-- -->
	Comment tags hide the contents of the javascript form noscript-capable broswers.

The example below shows how to use JavaScript to write text on a web page:

Example
<html>
<body>
<script type="text/javascript">
document.write("Hello World");
</script>
</body>
</html>
To insert a JavaScript into an HTML page, we use the <script> tag. Inside the <script> tag we use the type attribute to define the scripting language.

So, the <script type="text/javascript"> and </script> tells where the JavaScript starts and ends:

The document.write command is a standard JavaScript command for writing output to a page. By entering the document.write command between the <script> and </script> tags, the browser will recognize it as a JavaScript command and execute the code line.
Note: If we had not entered the <script> tag, the browser would have treated the document.write("Hello World") command as pure text, and just write the entire line on the page.

How to Handle Simple Browsers

Browsers that do not support JavaScript, will display JavaScript as page content.

To prevent them from doing this, and as a part of the JavaScript standard, the HTML comment tag should be used to "hide" the JavaScript.

Just add an HTML comment tag <!-- before the first JavaScript statement, and a --> (end of comment) after the last JavaScript statement, like this:
<html>
<body>
<script type="text/javascript">
<!--
document.write("Hello World");
//-->
</script>
</body>
</html>

The two forward slashes at the end of comment line (//) is the JavaScript comment symbol. This prevents JavaScript from executing the --> tag.

Adding JavaScript in HTML
JavaScripts can be put in the body and in the head sections of an HTML page. JavaScript in a page will be executed immediately while the page loads into the browser. This is not always what we want. Sometimes we want to execute a script when a page loads, or at a later event, such as when a user clicks a button, put the script inside a function.
You can add JavaScript to your page in three ways:

· Embed the JavaScript in the page.

· Place the JavaScript in the document head

· Link to JavaScript stored in another document.

Scripts in <head>

Scripts to be executed when they are called, or when an event is triggered, are placed in functions.Put your functions in the head section, this way they are all in one place, and they do not interfere with page content.

Example

	<html>
<head>
<script type="text/javascript">
function message()
{
alert("This alert box was called with the onload event");
}
</script>
</head>

<body onload="message()">
</body>
</html>

Scripts in <body>

If you don't want your script to be placed inside a function, or if your script should write page content, it should be placed in the body section.

Example

	<html>
<head>
</head>

<body>
<script type="text/javascript">
document.write("This message is written by JavaScript");
</script>
</body>

</html>

Scripts in <head> and <body>

You can place an unlimited number of scripts in your document, so you can have scripts in both the body and the head section.

Example

	<html>
<head>
<script type="text/javascript">
function message()
{
alert("This alert box was called with the onload event");
}
</script>
</head>

<body onload="message()">
<script type="text/javascript">
document.write("This message is written by JavaScript");
</script>
</body>

</html>

Using an External JavaScript

If you want to run the same JavaScript on several pages, without having to write the same script on every page, you can write a JavaScript in an external file. Save the external JavaScript file with a .js file extension.

To use the external script, point to the .js file in the "src" attribute of the <script> tag:

Example
index.html

<html>
<head>
<script type="text/javascript" src="xyz.js"></script>
</head>
<body>
</body>
</html>
xyz.js
document.write("This is External JavaScript");
Note: Remember to place the script exactly where you normally would write the script. The external script file cannot contain the <script></script> tags.
Reserved Words

JavaScript has a number of reserved words, words that you cannot use for variable in your script. These words are either in use, as functions or are reserved for future use:

	abstract
	boolean
	break
	byte
	case
	catch

	char
	class
	comment
	const
	continue
	debugger

	default
	delete
	do
	double
	else
	enum

	export
	extends
	false
	final
	finally
	float

	for
	function
	goto
	if
	implements
	import

	in
	instanceof
	int
	interface
	label
	long

	native
	new
	null
	package
	private
	protected

	public
	return
	short
	static
	super
	switch

	synchronized
	this
	throw
	throws
	transient
	true

	try
	typeof
	var
	void
	while
	with

JavaScript Statements
A statement is a JavaScript language sentence. Statements combine the objects, properties, and methods.

JavaScript is a sequence of statements to be executed by the browser. Unlike HTML, JavaScript is case sensitive - therefore watch your capitalization closely when you write JavaScript statements, create or call variables, objects and functions.

A JavaScript statement is a command to a browser. The purpose of the command is to tell the browser what to do.

This JavaScript statement tells the browser to write "Hello Everybody" to the web page:
document.write("Hello Everybody");

It is normal to add a semicolon at the end of each executable statement. Most people think this is a good programming practice. The semicolon is optional (according to the JavaScript standard), and the browser is supposed to interpret the end of the line as the end of the statement. Because of this you will often see examples without the semicolon at the end.

Note: Using semicolons makes it possible to write multiple statements on one line.

JavaScript Code

JavaScript code (or just JavaScript) is a sequence of JavaScript statements. Each statement is executed by the browser in the sequence they are written.

This example will write a heading and two paragraphs to a web page:
<script type="text/javascript">
document.write("<h1>This is a heading</h1>");
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another paragraph.</p>");
</script>

Blocks

JavaScript statements can be grouped together in blocks. Blocks start with a left curly bracket {, and ends with a right curly bracket }. The purpose of a block is to make the sequence of statements execute together.

This example will write a heading and two paragraphs to a web page:
<script type="text/javascript">
{
document.write("<h1>This is a heading</h1>");
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another paragraph.</p>");
}
</script>

The example above is not very useful. It just demonstrates the use of a block. Normally a block is used to group statements together in a function or in a condition.

Comments

JavaScript comments can be used to make the code more readable. Comments can be added to explain the JavaScript, or to make the code more readable.

Single line comments start with //.

The following example uses single line comments to explain the code:
<script type="text/javascript">
// Write a heading
document.write("<h1>This is a heading</h1>");
// Write two paragraphs:
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another paragraph.</p>");
</script>

JavaScript Multi-Line Comments

Multi line comments start with /* and end with */.

The following example uses a multi line comment to explain the code:
<script type="text/javascript">
/*
The code below will write
one heading and two paragraphs
*/
document.write("<h1>This is a heading</h1>");
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another paragraph.</p>");
</script>

Using Comments to Prevent Execution

In the following example the comment is used to prevent the execution of a single code line (can be suitable for debugging):
<script type="text/javascript">
//document.write("<h1>This is a heading</h1>");
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another paragraph.</p>");
</script>

In the following example the comment is used to prevent the execution of a code block (can be suitable for debugging):
<script type="text/javascript">
/*
document.write("<h1>This is a heading</h1>");
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another paragraph.</p>");
*/
</script>

Using Comments at the End of a Line

In the following example the comment is placed at the end of a code line:

Example
<script type="text/javascript">
document.write("Hello"); // Write "Hello"
document.write(" World!"); // Write " World!"
</script>

Variables

Variables are "containers" for storing information. JavaScript variables are used to hold values or expressions. A variable can have a short name, like x, or a more descriptive name, like firstname.

Rules for JavaScript variable names:

· Variable names are case sensitive (y and Y are two different variables)

· Variable names must begin with a letter or the underscore character

Note: Because JavaScript is case-sensitive, variable names are case-sensitive.

A variable's value can change during the execution of a script. You can refer to a variable by its name to display or change its value.
Declaring (Creating) JavaScript Variables

Creating variables in JavaScript is most often referred to as "declaring" variables.

You can declare JavaScript variables with the var statement:
var x;
var firstname;

After the declaration shown above, the variables are empty (they have no values yet).

However, you can also assign values to the variables when you declare them:
var x=5;
var firstname="Matrix";

After the execution of the statements above, the variable x will hold the value 5, and firstname will hold the value Matrix.

Note: When you assign a text value to a variable, use quotes around the value.

Assigning Values to Undeclared JavaScript Variables

If you assign values to variables that have not yet been declared, the variables will automatically be declared.

These statements:
x=5;
firstname="Matrix";

have the same effect as:
var x=5;
var firstname="Matrix";

Redeclaring JavaScript Variables

If you redeclare a JavaScript variable, it will not lose its original value.
var x=5;
var x;

After the execution of the statements above, the variable x will still have the value of 5. The value of x is not reset (or cleared) when you redeclare it.
Operators

The assignment operator = is used to assign values to JavaScript variables.

The arithmetic operator + is used to add values together.
y=5;
z=2;
x=y+z;

The value of x, after the execution of the statements above is 7.

JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic between variables and/or values.

Given that y=5, the table below explains the arithmetic operators:

	Operator
	Description
	Example
	Result

	+
	Addition
	x=y+2
	x=7

	-
	Subtraction
	x=y-2
	x=3

	*
	Multiplication
	x=y*2
	x=10

	/
	Division
	x=y/2
	x=2.5

	%
	Modulus (division remainder)
	x=y%2
	x=1

	++
	Increment
	x=++y
	x=6

	--
	Decrement
	x=--y
	x=4

JavaScript Assignment Operators

Assignment operators are used to assign values to JavaScript variables.

Given that x=10 and y=5, the table below explains the assignment operators:

	Operator
	Example
	Same As
	Result

	=
	x=y
	
	x=5

	+=
	x+=y
	x=x+y
	x=15

	-=
	x-=y
	x=x-y
	x=5

	*=
	x*=y
	x=x*y
	x=50

	/=
	x/=y
	x=x/y
	x=2

	%=
	x%=y
	x=x%y
	x=0

The + Operator Used on Strings

The + operator can also be used to add string variables or text values together.

To add two or more string variables together, use the + operator.
txt1="What a very";
txt2="nice day";
txt3=txt1+txt2;

After the execution of the statements above, the variable txt3 contains "What a verynice day".

To add a space between the two strings, insert a space into one of the strings:
txt1="What a very ";
txt2="nice day";
txt3=txt1+txt2;

or insert a space into the expression:
txt1="What a very";
txt2="nice day";
txt3=txt1+" "+txt2;

After the execution of the statements above, the variable txt3 contains:

"What a very nice day"
Adding Strings and Numbers

The rule is: If you add a number and a string, the result will be a string.
Example
x=5+5;
document.write(x); Output=10

x="5"+"5";
document.write(x); Output=55

x=5+"5";
document.write(x); Output=55

x="5"+5;
document.write(x); Output=55
Comparison and Logical Operators

Comparison and Logical operators are used to test for true or false.

Comparison Operators

Comparison operators are used in logical statements to determine equality or difference between variables or values.

Given that x=5, the table below explains the comparison operators:

	Operator
	Description
	Example

	==
	is equal to
	x==8 is false

	===
	is exactly equal to (value and type)
	x===5 is true
x==="5" is false

	!=
	is not equal
	x!=8 is true

	>
	is greater than
	x>8 is false

	<
	is less than
	x<8 is true

	>=
	is greater than or equal to
	x>=8 is false

	<=
	is less than or equal to
	x<=8 is true

Comparison operators can be used in conditional statements to compare values and take action depending on the result:
if (age<18)
document.write("Too young");

Logical Operators

Logical operators are used to determine the logic between variables or values.

Given that x=6 and y=3, the table below explains the logical operators:

	Operator
	Description
	Example

	&&
	and
	(x < 10 && y > 1) is true

	||
	or
	(x==5 || y==5) is false

	!
	not
	!(x==y) is true

Conditional Operator

JavaScript also contains a conditional operator that assigns a value to a variable based on some condition.

Syntax

variablename=(condition)?value1:value2

Example

greeting=(visitor=="student")?"Dear Student": "Dear Visitor";

If the variable visitor has the value of "student the variable greeting will be assigned the value "Dear student " else it will be assigned "Dear Visitor".
Conditional Statements

Conditional statements are used to perform different actions based on different conditions.

In JavaScript we have the following conditional statements:

· if statement - use this statement to execute some code only if a specified condition is true

· if...else statement - use this statement to execute some code if the condition is true and another code if the condition is false

· if...else if....else statement - use this statement to select one of many blocks of code to be executed

· switch statement - use this statement to select one of many blocks of code to be executed

If Statement

Use the if statement to execute some code only if a specified condition is true.

Syntax

if (condition)
 {
 code to be executed if condition is true
 }

Note Using uppercase letters (IF) will generate a JavaScript error!

Example
<script type="text/javascript">
var x=20;
if (x>10)
 {
 document.write("x is greater than 10.");
 }
</script>
Notice that there is no ..else.. in this syntax. You tell the browser to execute some code only if the specified condition is true.
If...else Statement

Use the if....else statement to execute some code if a condition is true and another code if the condition is not true.

Syntax

if (condition)
 {
 code to be executed if condition is true
 }
else
 {
 code to be executed if condition is not true
 }

Example
<script type="text/javascript">
var x=20;
if (x< 10)
 {
 document.write("x is less than 10");
 }
else
 {
 document.write(" x is not less than 10");
 }
</script>
If...else if...else Statement

Use the if....else if...else statement to select one of several blocks of code to be executed.

Syntax
if (condition1)
 {
 code to be executed if condition1 is true
 }
else if (condition2)
 {
 code to be executed if condition2 is true
 }
else
 {
 code to be executed if condition1 and condition2 are not true
 }
Example
<script type="text/javascript">
var x=20;

if (x<10)
 {
 document.write("x is less than 10");
 }
else if (x<30)
 {
 document.write("x is less than 30");
 }
else
 {
 document.write("x is not less than 30.");
 }
</script>
JavaScript Switch Statement

Conditional statements are used to perform different actions based on different conditions. Use the switch statement to select one of many blocks of code to be executed.

Syntax
switch(n)
{
case 1:
 execute code block 1
 break;
case 2:
 execute code block 2
 break;
default:
 code to be executed if n is different from case 1 and 2
}
This is how it works: First we have a single expression n (most often a variable), that is evaluated once. The value of the expression is then compared with the values for each case in the structure. If there is a match, the block of code associated with that case is executed. Use break to prevent the code from running into the next case automatically.

Example

	<script type="text/javascript">
var x=2;

switch (x)
{
case 1:
 document.write("case 1 executed");
 break;
case 2:
 document.write("case 2 executed");
 break;
case 3:
 document.write("case 3 executed");
 break;
default:
 document.write("No case matched");
}
</script>

Popup Boxes

JavaScript has three kind of popup boxes: Alert box, Confirm box, and Prompt box.

Alert Box

An alert box is often used if you want to make sure information comes through to the user. When an alert box pops up, the user will have to click "OK" to proceed.

Syntax

alert("sometext");

Example
<html>
<head>
<script type="text/javascript">
function myalert()
{
alert("This is Alert Box");
}
</script>
</head>
<body>

<input type="button" onclick="myalert()" value="Click Here" />

</body>
</html>
Confirm Box

A confirm box is often used if you want the user to verify or accept something.

When a confirm box pops up, the user will have to click either "OK" or "Cancel" to proceed.

If the user clicks "OK", the box returns true. If the user clicks "Cancel", the box returns false.

Syntax

confirm("sometext");

Example

	<html>
<head>
<script type="text/javascript">
function myconfirm()
{
var r=confirm("Press a button");
if (r==true)
 {
 alert("You pressed OK!");
 }
else
 {
 alert("You pressed Cancel!");
 }
}
</script>
</head>
<body>

<input type="button" onclick="myconfirm()" value="Click Here!" />

</body>
</html>

Prompt Box

A prompt box is often used if you want the user to input a value before entering a page. When a prompt box pops up, the user will have to click either "OK" or "Cancel" to proceed after entering an input value. If the user clicks "OK" the box returns the input value. If the user clicks "Cancel" the box returns null.

Syntax
prompt("sometext","defaultvalue");
Example

	<html>
<head>
<script type="text/javascript">
function myprompt()
{
var name=prompt("Please enter your name", "Matrix");
if (name!=null && name!="")
 {
 document.write("Hello " + name + ", Its JavaScript a JavaScript Example.");
 }
}
</script>
</head>
<body>

<input type="button" onclick="myprompt()" value="Click Here" />

</body>
</html>

Note:- In promt(" "," ") The first parameter is to display text on prompt box and second parameter is for default value.
Example:- Display Factorial of a number

<html>
 <head>
 <title> New Document </title>
 <script type="text/javascript">

 function factorial()

 {

 var factor=prompt("factor",5);

var factorial=1;

while(factor>0)

{

factorial=factorial*factor;

factor-=1;

 }

if(confirm("Display"))

{

alert(factorial);

}

else

alert("Confirm First");

}

 </script>

 </head>
 <body>
 <input type="button" onClick="factorial()" value="Factorial">

</body>
</html>
Functions

A function will be executed by an event or by a call to the function. To keep the browser from executing a script when the page loads, you can put your script into a function. A function contains code that will be executed by an event or by a call to the function. You may call a function from anywhere within a page (or even from other pages if the function is embedded in an external .js file). Functions can be defined both in the <head> and in the <body> section of a document.

Syntax
function functionname(var1,var2,...,varX)
{
some code
}
The parameters var1, var2, etc. are variables or values passed into the function. The { and the } defines the start and end of the function.

Note: A function with no parameters must include the parentheses () after the function name.
like function myfunction()

{

}
Note: The word function must be written in lowercase letters, otherwise a JavaScript error occurs.
Example

	<html>
<head>
<script type="text/javascript">
function displaymessage()
{
alert("Hello Everybody");
}
</script>
</head>

<body>
<form>
<input type="button" value="Click Here" onclick="displaymessage()" />
</form>
</body>
</html>

The function displaymessage() will be executed if the input button is clicked.

The return Statement

The return statement is used to specify the value that is returned from the function. So, functions that are going to return a value must use the return statement.

The example below returns the product of two numbers (a and b):

Example
<html>
<head>
<script type="text/javascript">
function product(a,b)
{
return a*b;
}
</script>
</head>
<body>
<script type="text/javascript">
document.write(product(4,3));
</script>
</body>
</html>

The Lifetime of JavaScript Variables

If you declare a variable within a function, the variable can only be accessed within that function. When you exit the function, the variable is destroyed. These variables are called local variables. You can have local variables with the same name in different functions, because each is recognized only by the function in which it is declared.

If you declare a variable outside a function, all the functions on your page can access it. The lifetime of these variables starts when they are declared, and ends when the page is closed.

Loops
Loops execute a block of code a specified number of times, or while a specified condition is true. Often when you write code, you want the same block of code to run over and over again in a row. Instead of adding several almost equal lines in a script we can use loops to perform a task like this.

In JavaScript, there are two different kind of loops:

· for - loops through a block of code a specified number of times

· while - loops through a block of code while a specified condition is true

The for Loop

The for loop is used when you know in advance how many times the script should run.

Syntax

for (var=startvalue; var<=endvalue; var=var+increment)
{
code to be executed
}
Example

The example below defines a loop that starts with i=0. The loop will continue to run as long as i is less than, or equal to 5. i will increase by 1 each time the loop runs.

Note: The increment parameter could also be negative, and the <= could be any comparing statement.
<html>
<body>
<script type="text/javascript">
var i=0;
for (i=0;i<=5;i++)
{
document.write("The number is " + i);
document.write("
");
}
</script>
</body>
</html>

The while Loop

The while loop loops through a block of code while a specified condition is true.

Syntax
while (var<=endvalue)
 {
 code to be executed
 }
Note: The <= could be any comparing statement.

Example

The example below defines a loop that starts with i=0. The loop will continue to run as long as i is less than, or equal to 5. i will increase by 1 each time the loop runs:
<html>
<body>
<script type="text/javascript">
var i=0;
while (i<=5)
 {
 document.write("The number is " + i);
 document.write("
");
 i++;
 }
</script>
</body>
</html>

The do...while Loop

The do...while loop is a variant of the while loop. This loop will execute the block of code ONCE, and then it will repeat the loop as long as the specified condition is true.

Syntax
do
 {
 code to be executed
 }
while (var<=endvalue);
Example

The example below uses a do...while loop. The do...while loop will always be executed at least once, even if the condition is false, because the statements are executed before the condition is tested:
<html>
<body>
<script type="text/javascript">
var i=0;
do
 {
 document.write("The number is " + i);
 document.write("
");
 i++;
 }
while (i<=5);
</script>
</body>
</html>

Break and Continue Statements

The break Statement

The break statement will break the loop and continue executing the code that follows after the loop (if any).

Example

	<html>
<body>
<script type="text/javascript">
var i=0;
for (i=0;i<=10;i++)
 {
 if (i==3)
 {
 break;
 }
 document.write("The number is " + i);
 document.write("
");
 }
</script>
</body>
</html>

The continue Statement

The continue statement will break the current loop and continue with the next value.

Example

	<html>
<body>
<script type="text/javascript">
var i=0
for (i=0;i<=10;i++)
 {
 if (i==3)
 {
 continue;
 }
 document.write("The number is " + i);
 document.write("
");
 }
</script>
</body>
</html>

JavaScript For...In Statement

The for...in statement loops through the elements of an array or through the properties of an object.

Syntax

for (variable in object)
 {
 code to be executed
 }

Note: The code in the body of the for...in loop is executed once for each element/property.

Note: The variable argument can be a named variable, an array element, or a property of an object.

Example

Use the for...in statement to loop through an array:

	<html>
<body>

<script type="text/javascript">
var x;
var mycars = new Array();
mycars[0] = "Maruti";
mycars[1] = "Tata";
mycars[2] = "Honda";

for (x in mycars)
 {
 document.write(mycars[x] + "
");
 }
</script>

</body>
</html>

Events
An event occurs when something happens on your page, such as visitor submitting a form or moving the mouse cursor over an object. An event handler waits for something happen –such as the mouse moving over a link –and then launches a script based on that event

Events are actions that can be detected by JavaScript. By using JavaScript, we have the ability to create dynamic web pages. Events are actions that can be detected by JavaScript. Every element on a web page has certain events which can trigger a JavaScript. For example, we can use the onClick event of a button element to indicate that a function will run when a user clicks on the button. We define the events in the HTML tags.

Examples of events:

· A mouse click

· A web page or an image loading

· Mousing over a hot spot on the web page

· Selecting an input field in an HTML form

· Submitting an HTML form

· A keystroke

Note: Events are normally used in combination with functions, and the function will not be executed before the event occurs!

onLoad and onUnload

The onLoad and onUnload events are triggered when the user enters or leaves the page. The onLoad event is often used to check the visitor's browser type and browser version, and load the proper version of the web page based on the information.

Both the onLoad and onUnload events are also often used to deal with cookies that should be set when a user enters or leaves a page.

onFocus, onBlur and onChange

The onFocus, onBlur and onChange events are often used in combination with validation of form fields.

Below is an example of how to use the onChange event. The checkEmail() function will be called whenever the user changes the content of the field:
<input type="text" size="30" id="email" onchange="checkEmail()">

onSubmit

The onSubmit event is used to validate ALL form fields before submitting it.

Below is an example of how to use the onSubmit event. The checkForm() function will be called when the user clicks the submit button in the form. If the field values are not accepted, the submit should be cancelled. The function checkForm() returns either true or false. If it returns true the form will be submitted, otherwise the submit will be cancelled:
<form method="post" action="xyz.htm" onsubmit="return checkForm()">

onMouseOver and onMouseOut

onMouseOver and onMouseOut are often used to create "animated" buttons.

Below is an example of an onMouseOver event. An alert box appears when an onMouseOver event is detected:

Catching Errors

The try...catch statement allows you to test a block of code for errors.

The try...catch Statement

The try...catch statement allows you to test a block of code for errors. The try block contains the code to be run, and the catch block contains the code to be executed if an error occurs.

Syntax

try
 {
 //Run some code here
 }
catch(err)
 {
 //Handle errors here
 }

Examples

The example below is supposed to alert "Welcome guest!" when the button is clicked. However, there's a typo in the message() function. alert() is misspelled as adddlert(). A JavaScript error occurs. The catch block catches the error and executes a custom code to handle it. The code displays a custom error message informing the user what happened:

Example

	<html>
<head>
<script type="text/javascript">
var txt="";
function message()
{
try
 {
 adddlert("Welcome guest!");
 }
catch(err)
 {
 txt="There was an error on this page.\n\n";
 txt+="Error description: " + err.description + "\n\n";
 txt+="Click OK to continue.\n\n";
 alert(txt);
 }
}
</script>
</head>

<body>
<input type="button" value="View message" onclick="message()" />
</body>

</html>

The next example uses a confirm box to display a custom message telling users they can click OK to continue viewing the page or click Cancel to go to the homepage. If the confirm method returns false, the user clicked Cancel, and the code redirects the user. If the confirm method returns true, the code does nothing:

Example

	<html>
<head>
<script type="text/javascript">
var txt="";
function message()
{
try
 {
 adddlert("Welcome guest!");
 }
catch(err)
 {
 txt="There was an error on this page.\n\n";
 txt+="Click OK to continue viewing this page,\n";
 txt+="or Cancel to return to google.com.\n\n";
 if(!confirm(txt))
 {
 document.location.href="www.google.com";
 }
 }
}
</script>
</head>

<body>
<input type="button" value="View message" onclick="message()" />
</body>

</html>

The throw Statement

The throw statement can be used together with the try...catch statement, to create an exception for the error. The throw statement allows you to create an exception. If you use this statement together with the try...catch statement, you can control program flow and generate accurate error messages.

Syntax

throw(exception)

The exception can be a string, integer, Boolean or an object.

Example

The example below determines the value of a variable called x. If the value of x is higher than 10, lower than 0, or not a number, we are going to throw an error. The error is then caught by the catch argument and the proper error message is displayed:

	<html>
<body>
<script type="text/javascript">
var x=prompt("Enter a number between 0 and 10:","");
try
 {
 if(x>10)
 {
 throw "Err1";
 }
 else if(x<0)
 {
 throw "Err2";
 }
 else if(isNaN(x))
 {
 throw "Err3";
 }
 }
catch(er)
 {
 if(er=="Err1")
 {
 alert("Error! The value is too high");
 }
 if(er=="Err2")
 {
 alert("Error! The value is too low");
 }
 if(er=="Err3")
 {
 alert("Error! The value is not a number");
 }
 }
</script>
</body>
</html>

Special Characters

In JavaScript you can add special characters to a text string by using the backslash sign. The backslash (\) is used to insert apostrophes, new lines, quotes, and other special characters into a text string.

Look at the following JavaScript code:
var txt="We are the so-called "Sun" from the north.";
document.write(txt);

In JavaScript, a string is started and stopped with either single or double quotes.
To solve this problem, you must place a backslash (\) before each double quote in "Sun". This turns each double quote into a string literal:

var txt="We are the so-called \"Sun\" from the north.";
document.write(txt);

JavaScript will now output the proper text string: We are the so-called "Sun" from the north.

Here is another example:
document.write ("You \& I are singing!");

The example above will produce the following output:
You & I are singing!

The table below lists other special characters that can be added to a text string with the backslash sign:

	Code
	Outputs

	\'
	single quote

	\"
	double quote

	\&
	ampersand

	\\
	backslash

	\n
	new line

	\r
	carriage return

	\t
	tab

	\b
	backspace

	\f
	form feed

JavaScript is Case Sensitive

A function named "myfunction" is not the same as "myFunction" and a variable named "myVar" is not the same as "myvar".

White Space

JavaScript ignores extra spaces. You can add white space to your script to make it more readable. The following lines are equivalent:
name="Hege";
name = "Hege";
Break up a Code Line
You can break up a code line within a text string with a backslash. The example below will be displayed properly:
document.write("Hello \
World!");

However, you cannot break up a code line like this:
document.write \
("Hello World!");
Objects
JavaScript is an Object Oriented Programming (OOP) language. An OOP language allows you to define your own objects and make your own variable types. There are several built-in JavaScript objects. Note that an object is just a special kind of data. An object has properties and methods.
Properties

Properties are the values associated with an object.

In the following example we are using the length property of the String object to return the number of characters in a string:
<script type="text/javascript">
var txt="Hello World!";
document.write(txt.length);
</script>

The output of the code above will be:
12

Methods

Methods are the actions that can be performed on objects.

In the following example we are using the toUpperCase() method of the String object to display a text in uppercase letters:
<script type="text/javascript">
var str="Hello world!";
document.write(str.toUpperCase());
</script>

The output of the code above will be:
HELLO WORLD!

JavaScript Objects

	Object Name
	Description

	navigator
	To access information about the browser that is executing current script.

	window
	To access a browser window or a frame within the window. The window object is assumed to exist and does not require the ‘window’ prefix when referring to its properties and methods.

	document
	To access the document currently loaded into a window. The document object refers to an HTML document that provides content, that is, one that has HEAD and BODY tags.

	location
	To represent a URL. It can be used to create a URL object, access parts of a URL, or modify an existing URL.

	history
	To maintain a history of the URL’s accessed within a window.

	event
	To access information about the occurrence of an event.

	Event
	The Event(capital E) object provides constants that are used to identify events.

JavaScript String Object

The String object is used to manipulate a stored piece of text.

The string object has only one property:

	Property
	Description

	length
	An integer value indicating the number of characters in the string.

Methods:

	Method
	Description

	big()
	Surrounds the string with the HTML big tag

	blink()
	Surrounds the string with the HTML blink tag

	bold()
	Surrounds the string with the HTML bold tag

	charat()
	Given an index as an argument, returns the character at the Specified index.

	italics()
	Surrounds the string with the HTML <i> tag

	tolowercase()
	Makes the entire string lowercase.

	touppercase()
	Makes the entire string uppercase.

	substring()
	Given two indexes, returns the substring starting at the first index and ending with the character before the last index. If the second index is greater, the substring with the second index and ends with the character before firs index; of the two indexes are equal, return the empty string.

The String object is used to manipulate a stored piece of text.

Examples
The following example uses the length property of the String object to find the length of a string:
var txt="Hello world!";
document.write(txt.length);

The code above will result in the following output:
12

The following example uses the toUpperCase() method of the String object to convert a string to uppercase letters:
var txt="Hello world!";
document.write(txt.toUpperCase());

The code above will result in the following output:
HELLO WORLD!

JavaScript Date Object

The Date object is used to work with dates and times.
Methods:

	getDate()
	Returns the day of the month as an integer from 1 to 31.

	setDate()
	Sets the day of the month based on an integer from 1 to 31.

	getHours()
	Returns the hours as an integer from 0 to 23.

	setHours()
	Sets the hours based on an argument from 0 to 23.

	getTime()
	Returns the number of milliseconds since 1 January 1970 at 00:00:00.

	setTime()
	Sets the time based on an argument representing the number of milliseconds since 1 January 1970 at 00:00:00.

Create a Date Object

The Date object is used to work with dates and times.

Date objects are created with the Date() constructor.

There are four ways of instantiating a date:

· new Date() // current date and time
· new Date(milliseconds) //milliseconds since 1970/01/01
· new Date(dateString)

· new Date(year, month, day, hours, minutes, seconds, milliseconds)

Most parameters above are optional. Not specifying, causes 0 to be passed in.

Once a Date object is created, a number of methods allow you to operate on it. Most methods allow you to get and set the year, month, day, hour, minute, second, and milliseconds of the object, using either local time or UTC (universal, or GMT) time.

All dates are calculated in milliseconds from 01 January, 1970 00:00:00 Universal Time (UTC) with a day containing 86,400,000 milliseconds.

Some examples of instantiating a date:

· today = new Date()

· d1 = new Date("October 13, 1975 11:13:00")
· d2 = new Date(79,5,24)
· d3 = new Date(79,5,24,11,33,0)

Set Dates

We can easily manipulate the date by using the methods available for the Date object.

In the example below we set a Date object to a specific date (14th January 2010):
var myDate=new Date();
myDate.setFullYear(2010,0,14);

And in the following example we set a Date object to be 5 days into the future:
var myDate=new Date();
myDate.setDate(myDate.getDate()+5);

Note: If adding five days to a date shifts the month or year, the changes are handled automatically by the Date object itself.
Compare Two Dates

The Date object is also used to compare two dates.

The following example compares today's date with the 14th June 2010:
var myDate=new Date();
myDate.setFullYear(2010,5,14);
var today = new Date();

if (myDate>today)
 {
 alert("Today is before 14th June 2010");
 }
else
 {
 alert("Today is after 14th June 2010");
 }

Note The month starts form 0. 5 is for June not 6.
Array Object

An array is a special variable, which can hold more than one value, at a time. The Array object is used to store multiple values in a single variable.

If you have a list of items (a list of car names, for example), storing the cars in single variables could look like this:
cars1="Maruti";
cars2="Tata ";
cars3="Honda";

However, what if you want to loop through the cars and find a specific one? And what if you had not 3 cars, but 300?

The best solution here is to use an array.
An array can hold all your variable values under a single name. And you can access the values by referring to the array name.

Each element in the array has its own ID so that it can be easily accessed.

Create an Array

An array can be defined in three ways.

The following code creates an Array object called myCars:

1:
var myCars=new Array(); // regular array (add an optional integer
myCars[0]="Maruti"; // argument to control array's size)
myCars[1]="Tata";
myCars[2]="Honda";

2:
var myCars=new Array("Maruti", "Tata", "Honda"); // condensed array

3:
var myCars=["Maruti", "Tata", "Honda"]; // literal array

Note: If you specify numbers or true/false values inside the array then the variable type will be Number or Boolean, instead of String.

Access an Array

You can refer to a particular element in an array by referring to the name of the array and the index number. The index number starts at 0.

The following code line:
document.write(myCars[0]);

will result in the following output:
Maruti
Modify Values in an Array

To modify a value in an existing array, just add a new value to the array with a specified index number:
 myCars[0]="Toyota";

Now, the following code line:
 document.write(myCars[0]);

will result in the following output:
 Toyota
Some predefined Methods:-
· Join two arrays - concat()
· Join all elements of an array into a string - join()
· Remove the last element of an array - pop()
· Add new elements to the end of an array - push()
· Reverse the order of the elements in an array - reverse()
· Remove the first element of an array - shift()
· Select elements from an array - slice()
· Sort an array (alphabetically and ascending) - sort()
· Convert an array to a string - toString()
· Add new elements to the beginning of an array - unshift()
JavaScript Boolean Object

The Boolean object is used to convert a non-Boolean value to a Boolean value (true or false). The Boolean object represents two values: "true" or "false".

The following code creates a Boolean object called myBoolean:
var myBoolean=new Boolean();

Note: If the Boolean object has no initial value or if it is 0, -0, null, "", false, undefined, or NaN, the object is set to false. Otherwise it is true (even with the string "false")!

All the following lines of code create Boolean objects with an initial value of false:
var myBoolean=new Boolean();
var myBoolean=new Boolean(0);
var myBoolean=new Boolean(null);
var myBoolean=new Boolean("");
var myBoolean=new Boolean(false);
var myBoolean=new Boolean(NaN);

And all the following lines of code create Boolean objects with an initial value of true:
var myBoolean=new Boolean(true);
var myBoolean=new Boolean("true");
var myBoolean=new Boolean("false");
var myBoolean=new Boolean("Matrix");

JavaScript Math Object

The Math object allows you to perform mathematical tasks. The Math object includes several mathematical constants and methods.

Syntax for using properties/methods of Math:
var pi_value=Math.PI;
var sqrt_value=Math.sqrt(16);

Note: Math is not a constructor. All properties and methods of Math can be called by using Math as an object without creating it.
Mathematical Constants

JavaScript provides eight mathematical constants that can be accessed from the Math object. These are: E, PI, square root of 2, square root of 1/2, natural log of 2, natural log of 10, base-2 log of E, and base-10 log of E.

You may reference these constants from your JavaScript like this:
Math.E
Math.PI
Math.SQRT2
Math.SQRT1_2
Math.LN2
Math.LN10
Math.LOG2E
Math.LOG10E

	Properties
	Description

	E
	Euler’s constant – the base of natural logarithms.

	LN10
	The natural logarithms of 10 (roughly 2.302)

	LN2
	The natural logarithms of 2 (roughly 0.693)

	PI
	The ratio of the circumference of a circle to the diameter of the same circle (roughly 3.1415)

Mathematical Methods

In addition to the mathematical constants that can be accessed from the Math object there are also several methods available.

	Methods
	Description

	abs()
	Calculates the absolute value of a number.

	ceil()
	Returns the next integer greater than or equal to a number.

	cos()
	Calculates the cosine of a number.

	floor()
	Returns the next integer less than or equal to a number.

	pow()
	Calculates the value of one number to the power of a second number –takes two arguments.

	random()
	Returns a random umber between zero and one.

	sin()
	Calculates the sine of a number.

	sqrt()
	Calculates the square root of a number.

	tan()
	Calculates the tangent of a number.

The following example uses the round() method of the Math object to round a number to the nearest integer:
document.write(Math.round(4.7));

The code above will result in the following output:
5

The following example uses the random() method of the Math object to return a random number between 0 and 1:
document.write(Math.random());

The code above can result in the following output:
0.103256554694832
The following example uses the floor() and random() methods of the Math object to return a random number between 0 and 10:
document.write(Math.floor(Math.random()*11));

The code above can result in the following output:
10

window Object
The window object is the topmost object for javaScript’s document, location, and history objects. The self and window properties are synonymous and refer to the current window. The keyword top refers to the uppermost window in the hierarchy, and parent refers to a window that contains one or more framesets. Because of its unique position, you do not have to address the properties of window in the same fashion as other objects: close() is the same as window.close() and self.close().

The window object uses event handlers, but the calls to these handlers are put in the <body> and <frameset> tags. It has the following format:

windowVar=window.open("URL", windowName"[,windowFeatures"])

The windowVar entry is the name of a new window, and windowName is the target=attribute of the <form> and <a> tags.

To use a window’s properties and methods, follow this format:

window.propertyName

window.methodName(parameters)

self. propertyName

self. methodName(parameters)

top. propertyName

top.methodName(parameters)

parent.propertyName

parent.methodName(parameters)

windowVar.propertyName

windowVar.methodName(parameters)

propertyName

methodName(parameters)

To define the onLoad or onUnload event handlers, include the statement in the <body> or <frameset> tags.

	Property
	Description

	defaultStatus
	The default message for the window’s status bar

	frames
	A list (array) of the window’s child frames.

	length
	The number of frames in a parent window.

	name
	Reflects the windowName variable.

	parent
	A synonym for windowName where the window contains a frameset.

	self
	A synonym for current windowName

	status
	Contains a priority or transient message for the status bar.

	top
	A synonym for the topmost browser window

	window
	A synonym for the current windowName

The window object also use these methods:

	Method
	Description

	alert()
	Displays an alert box with a message and an OK button

	blur()
	Removes focus from the current window

	clearInterval()
	Clears a timer set with setInterval()

	clearTimeout()
	Clears a timer set with setTimeout()

	close()
	Closes the current window

	confirm()
	Displays a dialog box with a message and an OK and a Cancel button

	createPopup()
	Creates a pop-up window

	focus()
	Sets focus to the current window

	moveBy()
	Moves a window relative to its current position

	moveTo()
	Moves a window to the specified position

	open()
	Opens a new browser window

	print()
	Prints the content of the current window

	prompt()
	Displays a dialog box that prompts the visitor for input

	resizeBy()
	Resizes the window by the specified pixels

	resizeTo()
	Resizes the window to the specified width and height

	scroll()
	

	scrollBy()
	Scrolls the content by the specified number of pixels

	scrollTo()
	Scrolls the content to the specified coordinates

	setInterval()
	Calls a function or evaluates an expression at specified intervals (in milliseconds)

	setTimeout()
	Calls a function or evaluates an expression after a specified number of milliseconds.

The window object uses two event handlers –onLoad and onUnload. It is not a property of anything.

history Object
The history object contains the list of visited URLs. The history object has the following format:

history.length

history.methodName(parameters)

The length entry is an integer representing a position in the history list. The methodName entry is one of the methods listed below.

There are three methods for the history object: back, forward, and go; each of these navigate through the history list. The history list does not use event handlers. It is the property document.

	Method
	Description

	back()
	Loads the previous URL in the history list

	forward()
	Loads the next URL in the history list

	go()
	Loads a specific URL from the history list

The back method belongs to the history object and uses the history list to return to the previous document. You can use this method to give visitors an alternative to the browser’s back button. It has the following syntax:

history.back()

document Object
The document object is the container for the information on the current page. This object controls the display of HTML information for the visitor. The document object includes only the <body> sections of an HTML document.
	Property
	Description

	alinkcolor
	Reflects the active link

	anchors
	An array containing a list of the anchors on the document

	bgcolor
	Reflects the background color

	cookie
	Specifies a cookie (information about the user/session)

	fgcolor
	Reflects the foreground color for text and other foreground elements such as borders or lines.

	forms
	An array containing a list of the forms in the document

	lastModified
	Reflects the date document was last changed

	linkcolor
	Reflects basic link color

	links
	Reflects the link attribute

	location
	Reflects the location (URL) of the document

	referrer
	Reflects the location (URL) of the parent or calling document.

	title
	Reflects the contents of the <title> tag.

	vlinkcolor
	 Reflects the color of past links activity.

The document object also uses five methods –clear , close , open , write , and writeln – but uses no event handlers. The document object is the property of window.

location Object
The location object contains information about the current URL. It contains a series of properties that describe each part of the URL. A URL has the following structure:

protocol//hostname:port pathname search hash
The protocol specifies the type of URL (for example, http or ftp). The hostname contains the host and domain name, or IP address, of the network host. The port specifies the communication port on the server (not all addresses use this). The pathname is the directory structure/location on the server. The search value is the mark (#) and indicates a target anchor on the page.

Here are some common protocol types:

javascript

about

http

file

ftp

mailto

news

gopher

The location object has the following format

[windowReference.]location.propertyName
location Object Properties
	Property
	Description

	hash
	Returns the anchor portion of a URL

	host
	Returns the hostname and port of a URL

	hostname
	Returns the hostname of a URL

	href
	Returns the entire URL

	pathname
	Returns the path name of a URL

	port
	Returns the port number the server uses for a URL

	protocol
	Returns the protocol of a URL

	search
	Returns the query portion of a URL

Location Object Methods

	Method
	Description

	assign()
	Loads a new document

	reload()
	Reloads the current document

	replace()
	Replaces the current document with a new one

The location object uses the same property as the link object. The location object does not use any methods or event handlers. It is a property document.

Example:

window.location.href=http://www.google.com/
screen Object

The screen object contains information about the visitor's screen.

Note: There is no public standard that applies to the screen object, but all major browsers support it.

Screen Object Properties

	Property
	Description

	availHeight
	Returns the height of the screen (excluding the Windows Taskbar)

	availWidth
	Returns the width of the screen (excluding the Windows Taskbar)

	colorDepth
	Returns the bit depth of the color palette for displaying images

	height
	Returns the total height of the screen

	pixelDept
	Returns the color resolution (in bits per pixel) of the screen

	width
	Returns the total width of the screen

RegExp Object

RegExp, is short for regular expression. A regular expression is an object that describes a pattern of characters.

When you search in a text, you can use a pattern to describe what you are searching for.

A simple pattern can be one single character. A more complicated pattern can consist of more characters, and can be used for parsing, format checking, substitution and more.

Regular expressions are used to perform powerful pattern-matching and "search-and-replace" functions on text.

Syntax
var txt=new RegExp(pattern,modifiers);

or more simply:

var txt=/pattern/modifiers;
· pattern specifies the pattern of an expression

· modifiers specify if a search should be global, case-sensitive, etc.

RegExp Modifiers

Modifiers are used to perform case-insensitive and global searches.

· The i modifier is used to perform case-insensitive matching.

· The g modifier is used to perform a global match (find all matches rather than stopping after the first match).

Example 1

Do a case-insensitive search for "matrix" in a string:
var str="Visit Matrix";
var patt1=/matrix/i;

The marked text below shows where the expression gets a match:
Visit Matrix
Example 2

Do a global search for "is":
var str="Is this all there is?";
var patt1=/is/g;

The marked text below shows where the expression gets a match:
Is this all there is?

Example 3

Do a global, case-insensitive search for "is":
var str="Is this all there is?";
var patt1=/is/gi;

The marked text below shows where the expression gets a match:
Is this all there is?

test()

The test() method searches a string for a specified value, and returns true or false, depending on the result.

The following example searches a string for the character "e":

Example

var patt1=new RegExp("e");
document.write(patt1.test("The best things in life are free"));

Since there is an "e" in the string, the output of the code above will be:
true

exec()

The exec() method searches a string for a specified value, and returns the text of the found value. If no match is found, it returns null.

The following example searches a string for the character "e":

Example 1
var patt1=new RegExp("e");
document.write(patt1.exec("The best things in life are free"));

Since there is an "e" in the string, the output of the code above will be:
e
JavaScript Browser Detection

The Navigator object contains information about the visitor's browser. Almost everything in this tutorial works on all JavaScript-enabled browsers. However, there are some things that just don't work on certain browsers - especially on older browsers.

Sometimes it can be useful to detect the visitor's browser, and then serve the appropriate information. The best way to do this is to make your web pages smart enough to look one way to some browsers and another way to other browsers.

The Navigator object contains information about the visitor's browser name, version, and more.

Note: There is no public standard that applies to the navigator object, but all major browsers support it.

The Navigator Object

The Navigator object contains all information about the visitor's browser:
Navigator Object Properties

	Property
	Description

	appCodeName
	Returns the code name of the browser

	appName
	Returns the name of the browser

	appVersion
	Returns the version information of the browser

	cookieEnabled
	Determines whether cookies are enabled in the browser

	platform
	Returns for which platform the browser is compiled

	userAgent
	Returns the user-agent header sent by the browser to the server

Navigator Object Methods

	Method
	Description

	javaEnabled()
	Specifies whether or not the browser has Java enabled

	taintEnabled()
	Specifies whether or not the browser has data tainting enabled

Example

	<html>
<body>

<script type="text/javascript">
document.write("Browser CodeName: " + navigator.appCodeName);
document.write("

");
document.write("Browser Name: " + navigator.appName);
document.write("

");
document.write("Browser Version: " + navigator.appVersion);
document.write("

");
document.write("Cookies Enabled: " + navigator.cookieEnabled);
document.write("

");
document.write("Platform: " + navigator.platform);
document.write("

");
document.write("User-agent header: " + navigator.userAgent);
</script>

</body>
</html>

JavaScript Cookies

A cookie is often used to identify a user. A cookie is a variable that is stored on the visitor's computer. Each time the same computer requests a page with a browser, it will send the cookie too. With JavaScript, you can both create and retrieve cookie values.

Examples of cookies:

Name cookie - The first time a visitor arrives to your web page, he or she must fill in her/his name. The name is then stored in a cookie. Next time the visitor arrives at your page, he or she could get a welcome message like "Welcome John Doe!" The name is retrieved from the stored cookie

Password cookie - The first time a visitor arrives to your web page, he or she must fill in a password. The password is then stored in a cookie. Next time the visitor arrives at your page, the password is retrieved from the cookie

Date cookie - The first time a visitor arrives to your web page, the current date is stored in a cookie. Next time the visitor arrives at your page, he or she could get a message like "Your last visit was on Tuesday August 11, 2005!" The date is retrieved from the stored cookie

Create and Store a Cookie

In this example we will create a cookie that stores the name of a visitor. The first time a visitor arrives to the web page, he or she will be asked to fill in her/his name. The name is then stored in a cookie. The next time the visitor arrives at the same page, he or she will get welcome message.

First, we create a function that stores the name of the visitor in a cookie variable:
function setCookie(c_name,value,expiredays)
{
var exdate=new Date();
exdate.setDate(exdate.getDate()+expiredays);
document.cookie=c_name+ "=" +escape(value)+
((expiredays==null) ? "" : ";expires="+exdate.toUTCString());
}

The parameters of the function above hold the name of the cookie, the value of the cookie, and the number of days until the cookie expires.

In the function above we first convert the number of days to a valid date, then we add the number of days until the cookie should expire. After that we store the cookie name, cookie value and the expiration date in the document.cookie object.

Then, we create another function that checks if the cookie has been set:

	function getCookie(c_name)
{
if (document.cookie.length>0)
 {
 c_start=document.cookie.indexOf(c_name + "=");
 if (c_start!=-1)
 {
 c_start=c_start + c_name.length+1;
 c_end=document.cookie.indexOf(";",c_start);
 if (c_end==-1) c_end=document.cookie.length;
 return unescape(document.cookie.substring(c_start,c_end));
 }
 }
return "";
}

The function above first checks if a cookie is stored at all in the document.cookie object. If the document.cookie object holds some cookies, then check to see if our specific cookie is stored. If our cookie is found, then return the value, if not - return an empty string.

Last, we create the function that displays a welcome message if the cookie is set, and if the cookie is not set it will display a prompt box, asking for the name of the user:

	function checkCookie()
{
username=getCookie('username');
if (username!=null && username!="")
 {
 alert('Welcome again '+username+'!');
 }
else
 {
 username=prompt('Please enter your name:',"");
 if (username!=null && username!="")
 {
 setCookie('username',username,365);
 }
 }
}

All together now:

Example

	<html>
<head>
<script type="text/javascript">
function getCookie(c_name)
{
if (document.cookie.length>0)
 {
 c_start=document.cookie.indexOf(c_name + "=");
 if (c_start!=-1)
 {
 c_start=c_start + c_name.length+1;
 c_end=document.cookie.indexOf(";",c_start);
 if (c_end==-1) c_end=document.cookie.length;
 return unescape(document.cookie.substring(c_start,c_end));
 }
 }
return "";
}

function setCookie(c_name,value,expiredays)
{
var exdate=new Date();
exdate.setDate(exdate.getDate()+expiredays);
document.cookie=c_name+ "=" +escape(value)+
((expiredays==null) ? "" : ";expires="+exdate.toUTCString());
}

function checkCookie()
{
username=getCookie('username');
if (username!=null && username!="")
 {
 alert('Welcome again '+username+'!');
 }
else
 {
 username=prompt('Please enter your name:',"");
 if (username!=null && username!="")
 {
 setCookie('username',username,365);
 }
 }
}
</script>
</head>

<body onload="checkCookie()">
</body>
</html>

The example above runs the checkCookie() function when the page loads.

JavaScript Form Validation

JavaScript can be used to validate data in HTML forms before sending off the content to a server.

Form data that typically are checked by a JavaScript could be:

· has the user left required fields empty?

· has the user entered a valid e-mail address?

· has the user entered a valid date?

· has the user entered text in a numeric field?

Required Fields

The function below checks if a required field has been left empty. If the required field is blank, an alert box alerts a message and the function returns false. If a value is entered, the function returns true (means that data is OK):
function validate_required(field, alerttxt)
{
with (field)
 {
 if (value==null||value=="")
 {
 alert(alerttxt);return false;
 }
 else
 {
 return true;
 }
 }
}

The entire script, with the HTML form could look something like this:

	<html>
<head>
<script type="text/javascript">
function validate_required(field, alerttxt)
{
with (field)
 {
 if (value==null||value=="")
 {
 alert(alerttxt);return false;
 }
 else
 {
 return true;
 }
 }
}

function validate_form(thisform)
{
with (thisform)
 {
 if (validate_required(email,"Email must be filled out!")==false)
 {email.focus();return false;}
 }
}
</script>
</head>

<body>
<form action="submit.htm" onsubmit="return validate_form(this)" method="post">
Email: <input type="text" name="email" size="30">
<input type="submit" value="Submit">
</form>
</body>

</html>

E-mail Validation

The function below checks if the content has the general syntax of an email.

This means that the input data must contain at least an @ sign and a dot (.). Also, the @ must not be the first character of the email address, and the last dot must at least be one character after the @ sign:

	function validate_email(field,alerttxt)
{
with (field)
 {
 apos=value.indexOf("@");
 dotpos=value.lastIndexOf(".");
 if (apos<1||dotpos-apos<2)
 {alert(alerttxt);return false;}
 else {return true;}
 }
}

The entire script, with the HTML form could look something like this:

	<html>
<head>
<script type="text/javascript">
function validate_email(field,alerttxt)
{
with (field)
 {
 apos=value.indexOf("@");
 dotpos=value.lastIndexOf(".");
 if (apos<1||dotpos-apos<2)
 {alert(alerttxt);return false;}
 else {return true;}
 }
}

function validate_form(thisform)
{
with (thisform)
 {
 if (validate_email(email,"Not a valid e-mail address!")==false)
 {email.focus();return false;}
 }
}
</script>
</head>

<body>
<form action="submit.htm" onsubmit="return validate_form(this);" method="post">
Email: <input type="text" name="email" size="30">
<input type="submit" value="Submit">
</form>
</body>

</html>

Animation

With JavaScript we can create animated images. It is possible to use JavaScript to create animated images.

The trick is to let a JavaScript change between different images on different events.

In the following example we will add an image that should act as a link button on a web page. We will then add an onMouseOver event and an onMouseOut event that will run two JavaScript functions that will change between the images.

The HTML Code

The HTML code looks like this:

<img border="0" alt="Image Swapping" src="b_pink.gif" id="b1"
onmouseOver="mouseOver()" onmouseOut="mouseOut()" />
Note that we have given the image an id, to make it possible for a JavaScript to address it. The onMouseOver event tells the browser that once a mouse is rolled over the image, the browser should execute a function that will replace the image with another image. The onMouseOut event tells the browser that once a mouse is rolled away from the image, another JavaScript function should be executed. This function will insert the original image again.

The JavaScript Code

The changing between the images is done with the following JavaScript:

	<script type="text/javascript">
function mouseOver()
{
document.getElementById("b1").src ="b_blue.gif";
}
function mouseOut()
{
document.getElementById("b1").src ="b_pink.gif";
}
</script>

The function mouseOver() causes the image to shift to "b_blue.gif".

The function mouseOut() causes the image to shift to "b_pink.gif".

The Entire Code

	<html>
<head>
<script type="text/javascript">
function mouseOver()
{
document.getElementById("b1").src ="b_blue.gif";
}
function mouseOut()
{
document.getElementById("b1").src ="b_pink.gif";
}
</script>
</head>

<body>

<img border="0" alt="Visit Google" src="b_pink.gif" id="b1"
onmouseover="mouseOver()" onmouseout="mouseOut()" />
</body>
</html>

JavaScript Image Maps

An image-map is an image with clickable regions. From our HTML tutorial we have learned that an image-map is an image with clickable regions. Normally, each region has an associated hyperlink. Clicking on one of the regions takes you to the associated link.

Adding some JavaScript

We can add events (that can call a JavaScript) to the <area> tags inside the image map. The <area> tag supports the onClick, onDblClick, onMouseDown, onMouseUp, onMouseOver, onMouseMove, onMouseOut, onKeyPress, onKeyDown, onKeyUp, onFocus, and onBlur events.

Here's the HTML image-map example, with some JavaScript added:

Example

	<html>

<head>

<script type="text/javascript">

function writeText(txt)

{

document.getElementById("desc").innerHTML=txt;

}

</script>

</head>

<body>

<img src="DSC_0277_2.jpg" width="145" height="126"

alt="Planets" usemap="#planetmap" />

<map name="planetmap">

<area shape ="rect" coords ="0,0,82,126"

onMouseOver="writeText('The Mouse is on Sun')"

href ="sun.htm" target ="_blank" alt="Sun" />

<area shape ="circle" coords ="100,100,30"

onMouseOver="writeText('The Mouse is on Venus')"

href ="venus.htm" target ="_blank" alt="Venus" />

</map>

<p id="desc"></p>

</body>

</html>

Example:- Image Swapping Using onMouseOver Event
<HTML>

 <HEAD>

 <script language="javascript">

 function flow(num)

 {

 if(num===1)

 {

document.images1.src="DSC_0277_3.jpg";

}

if(num===2)

{

document.images1.src="DSC_0277_2.jpg";

}

}

 </script>

</HEAD>

 <BODY>

 </BODY>

</HTML>
JavaScript Timing Events

JavaScript can be executed in time-intervals. With JavaScript, it is possible to execute some code after a specified time-interval. This is called timing events. It's very easy to time events in JavaScript. The two key methods that are used are:

setTimeout() - executes a code some time in the future

clearTimeout() - cancels the setTimeout()

Note: The setTimeout() and clearTimeout() are both methods of the HTML DOM Window object.

The setTimeout() Method

Syntax

var t=setTimeout("javascript statement",milliseconds);
The setTimeout() method returns a value - In the statement above, the value is stored in a variable called t. If you want to cancel this setTimeout(), you can refer to it using the variable name.

The first parameter of setTimeout() is a string that contains a JavaScript statement. This statement could be a statement like "alert('5 seconds!')" or a call to a function, like "alertMsg()".

The second parameter indicates how many milliseconds from now you want to execute the first parameter.

Note: There are 1000 milliseconds in one second.

Example

When the button is clicked in the example below, an alert box will be displayed after 5 seconds.

	<html>
<head>
<script type="text/javascript">
function timedMsg()
{
var t=setTimeout("alert('5 seconds!')",5000);
}
</script>
</head>

<body>
<form>
<input type="button" value="Display timed alertbox!"
onClick="timedMsg()" />
</form>
</body>
</html>

Example - Infinite Loop

To get a timer to work in an infinite loop, we must write a function that calls itself.

In the example below, when a button is clicked, the input field will start to count (for ever), starting at 0.

Notice that we also have a function that checks if the timer is already running, to avoid creating additional timers, if the button is pressed more than once:

	<html>
<head>
<script type="text/javascript">
var c=0;
var t;
var timer_is_on=0;

function timedCount()
{
document.getElementById('txt').value=c;
c=c+1;
t=setTimeout("timedCount()",1000);
}

function doTimer()
{
if (!timer_is_on)
 {
 timer_is_on=1;
 timedCount();
 }
}
</script>
</head>

<body>
<form>
<input type="button" value="Start count!" onClick="doTimer()">
<input type="text" id="txt" />
</form>
</body>
</html>

The clearTimeout() Method

Syntax

clearTimeout(setTimeout_variable)

Example

The example below is the same as the "Infinite Loop" example above. The only difference is that we have now added a "Stop Count!" button that stops the timer:

	<html>
<head>
<script type="text/javascript">
var c=0;
var t;
var timer_is_on=0;

function timedCount()
{
document.getElementById('txt').value=c;
c=c+1;
t=setTimeout("timedCount()",1000);
}

function doTimer()
{
if (!timer_is_on)
 {
 timer_is_on=1;
 timedCount();
 }
}

function stopCount()
{
clearTimeout(t);
timer_is_on=0;
}
</script>
</head>

<body>
<form>
<input type="button" value="Start count!" onClick="doTimer()">
<input type="text" id="txt">
<input type="button" value="Stop count!" onClick="stopCount()">
</form>
</body>
</html>

Create Your Own Objects

Objects are useful to organize information.

· Create a direct instance of an object
· Create a template for an object
An object is just a special kind of data, with a collection of properties and methods. An object is a thing –a check box on a form, the form itself, an image, a document, a link or even a browser window. Some objects are built into JavaScript and are not necessarily part of your page. For example, the Date object provides a wide range of date information.

A property describes an object. Properties can be anything from the color to the number of items, such as radio buttons, within an object. When visitors select an item in a form, they change the form’s properties.

Let's illustrate with an example: A person is an object. Properties are the values associated with the object. The persons' properties include name, height, weight, age, skin tone, eye color, etc. All persons have these properties, but the values of those properties will differ from person to person. Objects also have methods. Methods are the actions that can be performed on objects. The persons' methods could be eat(), sleep(), work(), play(), etc.

Properties

The syntax for accessing a property of an object is:
objName.propName

You can add properties to an object by simply giving it a value. Assume that the personObj already exists - you can give it properties named firstname, lastname, age, and eyecolor as follows:
personObj.firstname="John";
personObj.lastname="Doe";
personObj.age=30;
personObj.eyecolor="blue";

document.write(personObj.firstname);

The code above will generate the following output:
John
Methods
A method is an instruction. The methods available for each object describe what you can do with the object. Every object has a collection of methods, and every method belongs to at least one object.

An object can also contain methods.

You can call a method with the following syntax:
objName.methodName()

Note: Parameters required for the method can be passed between the parentheses.

To call a method called sleep() for the personObj:
personObj.sleep();

Creating Your Own Objects

There are different ways to create a new object:

1. Create a direct instance of an object

The following code creates an instance of an object and adds four properties to it:
personObj=new Object();
personObj.firstname="John";
personObj.lastname="Doe";
personObj.age=50;
personObj.eyecolor="blue";

Adding a method to the personObj is also simple. The following code adds a method called eat() to the personObj:
personObj.eat=eat;

2. Create a template of an object

The template defines the structure of an object:
function person(firstname, lastname, age, eyecolor)
{
this.firstname= firstname;
this.lastname=lastname;
this.age=age;
this.eyecolor=eyecolor;
}

Notice that the template is just a function. Inside the function you need to assign things to this.propertyName. The reason for all the "this" stuff is that you're going to have more than one person at a time (which person you're dealing with must be clear). That's what "this" is: the instance of the object at hand.

Once you have the template, you can create new instances of the object, like this:
myFather=new person("John","Doe",50,"blue"); myMother=new person("Sally","Rally",48,"green");

You can also add some methods to the person object. This is also done inside the template:
function person(firstname, lastname, age, eyecolor)
{
this.firstname=firstname;
this.lastname=lastname;
this.age=age;
this.eyecolor=eyecolor;

this.newlastname=newlastname;
}

Note that methods are just functions attached to objects. Then we will have to write the newlastname() function:
function newlastname(new_lastname)
{
this.lastname=new_lastname;
}

The newlastname() function defines the person's new last name and assigns that to the person. JavaScript knows which person you're talking about by using "this.". So, now you can write: myMother.newlastname("Doe").

Example:- Select all CheckBoxes by selecting only one.
<html>

<head>

<script language="javascript">

function selectall(boxvals)

{

if(boxvals[0].checked)

{

for (var x = 1; x < boxvals.length; x++)

{

boxvals[x].checked=true;

}

}

else

{

for (var x = 1; x < boxvals.length; x++)

{

boxvals[x].checked=false;

}

}

}

function confirmone(boxvals)

{

var count = 0;

for (var x = 1; x < boxvals.length; x++)

{

if (boxvals[x].checked == true)

{

count++;

}

}

if (count == (boxvals.length-1))

{

boxvals[0].checked = true;

}

else

{

boxvals[0].checked = false;

}

}

</script>

</head>

<body bgcolor=#fcfcf0>

<form name="selector"" method="post">

fillings (check one or more)

<input type="checkbox" name="filling" id="filling" value="everything" onclick="selectall(document.selector.filling)"> select all

<input type="checkbox" name="filling" id="filling" value="turkey"onclick="confirmone(document.selector.filling)"> one

<input type="checkbox" name="filling" id="filling" value="roastbeef" onclick="confirmone(document.selector.filling)"> two

<input type="checkbox" name="filling" id="filling" value="pastrami"onclick="confirmone(document.selector.filling)"> three

<input type="checkbox" name="filling" id="filling" value="eggplant" onclick="confirmone(document.selector.filling)"> four

</body>

</html>
Example:- Checking Password length
<html>

<head>

<title>Validation</title>

<script language="javascript">

var v="";

function users(user)

{

var x=user.value;

if(x.length==0 || x.length<6)

{

alert("Input atleast 6 characters");

return false;

}

}

function strong(y)

{

var z=y.value;

if(z.length<=14)

{

document.getElementById("x").value=z;

}

if(z.length<=6 && z.length>=0)

{

document.getElementById("y").value="Weak";

}

else

{

document.getElementById("y").value="Strong";

}

}

</script>

<style type="text/css">

.users

{

background-color:yellow;

}

.submits

{

background-color:yellow;

}

.x

{

color:#330033;height:10;font-size:7;background-color:#330033;border:0;font-weight:bold;

}

.y

{

color:red;width:50;height:20;background-color:white;border:0;font-weight:bold;

}

</style>

</head>

<body>

<h1 align="center">Online Examination</h1>

<form style="background-color:white;width:400;color:white;">

<table><tr><td>

<label for="username">Username:</label></td>

<td><input type="text" name="username" id="username" value="" class="users" maxlength="30"onchange="return users(this)" tabindex=1></td>

<td></td></tr>

<tr><td>

<label for="password">Password:</label></td>

<td><input type="password" name="password" id="password" value="" class="users" maxlength="30" onchange="return users(this)" onkeyup="strong(this)" tabindex=2></td>

<td><input type="button" name="x" id="x" value="" class="x" readonly tabindex="nn">

<input type="button" name="y" id="y" value="" class="y" readonly tabindex="nn"></td>

</tr>

<tr><td></td><td>

<input type="submit" name="submit" value="Login" class="submits" tabindex=3></td>

<td></td></tr>

</table>

</form>

</body>

</html>

